Leçon 246 - Séries de Fourier. . Exemples et application.

On considère $f:\to\mathbb{C}$ T-périodique. Quitte à dilater, on suppose que $T=2\pi$. On pose $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$.

1. Définition de la série de Fourier d'une fonction périodique intégrable. —

1. Définitions et notations. —

- On se place d'abord sur $L^2(\mathbb{R}/2\pi\mathbb{Z},\mathbb{C})$, avec $\langle f,g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x) \overline{g(x)} dx$.
- Def: $e_n(x) = e^{in2\pi x}$ pour $n \in \mathbb{Z}$. C'est une famille orthonormée. On appelle polynôme trigonométrique une combi lin des e_n .
- Def: Pour $f \in L^2$, $c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{inx} dx = \langle f, e_n \rangle$.
- Rem : Pour $P(x) = \sum_{n=-N}^{N} c_n e_n(x)$, on a $c_n = c_n(P)$.
- Def de $S_N(f)$, la somme partielle de la série de Fourier de f.
- Rem : $\int_{a}^{a+2\pi} f(x)dx$ ne dépend pas de a.
- Def: Comme $e_n(x) = \cos(nx) + i\sin(nx)$, un polynôme trigonométrique $\sum_{n=-N}^{N} c_n e_n(x)$ s'écrit aussi de la forme $\frac{a_0}{0} + \sum_{n=1}^{N} (a_n \cos(nx) + b_n \sin(x)n)$ avec $a_m = c_m + c_{-m}$, $b_m = i(c_m - c_{-m}).$
- Rem : Pour $c_n(f)$ coefficients de Fourier de f, on a alors $a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) cos(nx) dx$, pareil pour b_n .

2. Propriétés des coefficients de Fourier. —

- Si f est paire, les b_n sont nuls. Si f est impaire, les a_n sont nuls.
- Si une série trigonométrique converge uniformément sur \mathbb{T} , sa somme est égale à sa série de Fourier.
- Si f est de classe C^k , $c_n(f^{(k)}) = (in)^k c_n(f)$.
- $-S_N(f) = \sum_{n=-N}^N c_n(f)e_n(x)$ est aussi le projeté orthogonal de f sur $\text{Vect}(e_n, -N \leq n)$ n < N), qui converge donc dans L^2 vers le projeté orthogonal sur $\overline{Vect(e_n)}$. On a donc une convergence dans L^2 de la série de Fourier de f.
 - De plus, $||f||_2^2 \sum_{n=-N}^N |c_n(f)|^2 = \inf_{g \in P_N} ||f g||_2^2$.
- Lemme de Riemann-Lebesgue : $c_n(f) \rightarrow_{|n| \to +\infty} 0$
- $-c_n(f*g) = c_n(f)c_n(g).$
- Propriétés sur les a_n et b_n .

3. Des exemples. —

Exemples du Z-Q.

2. Différents modes de convergence. —

1. Convergence au sens de Césaro. —

- Def : $D_N := \sum_{n=-N}^N e_n, F_N := \frac{1}{N+1}. \sum_{n=0}^N D_n.$ **Dev** : Théorème de Féjer : La suite des F_N est une approximation de l'unité et $F_N * f = \frac{1}{N} \sum_{n=0}^{N-1} S_n(f)$ converge uniformément vers f pour tout f $2\pi - p\acute{e}riodique$

continue.

- Si f admet juste une limite à droite et à gauche en tout point, alors $F_N * f(x) \to_N$ $\frac{1}{2}(f(x^+)+f(x^-))$ ponctuellement.
- Les polynômes trigonométriques sont denses dans $C^0(\mathbb{T})$ pour $\|.\|_{\infty}$, donc denses dans les $L^p(\mathbb{T})$, car $C^0(\mathbb{T})$ y est dense pour la norme L^p . $(e_n)_n$ est donc une famille totale des L^p .
- Les fonctions polynômiales sont denses dans $C^0(K)$ pour tout K compact de \mathbb{R} .

2. Base hilbertienne de Fourier et convergence L^2 . —

- Inégalité de Bessel : $\sum_{n} |c_n(f)|^2 \le ||f||_2^2$.
- Théorème de Bessel-Parseval : $(e_n)_n$ est une base hilbertienne de L^2 .
- Les $(cos(2\pi nx))_n$ et $(sin(2\pi nx))_n$ forment donc une \mathbb{R} -base de L^2 .
- Def : C^k par morceaux
- Egalité de Parseval : Pour f 2π -périodique et continue par morceaux, les $(c_n)_n$, $(a_n)_n$ et $(b_n)_n$ sont de carré sommable et $\sum_n |c_n(f)|^2 = \frac{|a_0(f)|^2}{4} + \frac{1}{2} \sum_n (|a_n|^2 + |b_n|^2) =$ $||f||_2^2$.
- Corollaire : Pour $\sum_n \alpha_n z^n$ série entière de rayon de convergence R, pour tout $r \in$]0, R[, on a : $\sum_{n\geq 0} |\alpha_n|^2 r^n = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^2 dt$.
- Corollaire : $S_N(f)$ converge vers f en norme L^2 .

3. Convergences ponctuelle et uniforme. —

- Théorème : Si f est continue, et si $\sum |c_n(f)| < +\infty$, alors $S_N(f)$ converge uniformé-
- Corollaire: Si f est de classe C^1 , alors $\sum |c_n(f)| < +\infty$, et $S_N(f)$ CV unif vers f.
- Théorème de convergence ponctuelle : Soit f 2π -périodique et intégrable, qui admet en un x des limites à droite et à gauche.
 - Alors $S_N(f)(x)$ converge vers $\frac{1}{2}(f(x^+) + f(x^-))$.
- Théorème de Dirichlet : Si f est C^0 et C^1 par morceaux, alors la série de Fourier de f converge uniformément vers f. Si f est juste C^1 par morceaux, alors la série de Fourier de f converge uniformément vers $x \to \frac{1}{2}(f(x^+) + f(x^-))$.
- Rem : Il existe des fonctions continues dont la série de Fourier diverge.
- Le phénomène de Gibbs et son dessin.

3. Aplications. —

- 1. Calculs de sommes et de séries.
 - Pour f 2π -périodique, paire, telle que $f(x)=\chi_{[0,\pi/2[}-\chi_{]\pi/2,\pi]}\,\,{\rm sur}[0,\pi]$, la formule de Parseval donne : $\sum_{k} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}$. On en déduit $\sum_{k} \frac{1}{k^2} = \frac{\pi^2}{6}$.
 - Pour f 2π -périodique, paire, telle que $f(x) = |x| \sin |-\pi, \pi|$, la formule de Parseval nous donne : $\sum_{k} \frac{1}{(2k+1)^4} = \frac{\pi^4}{96}$. On en déduit $\sum_{k} \frac{1}{k^4} = \frac{\pi^4}{90}$.
 - Formule sommatoire de Poisson : Soit f de classe C^1 telle telle que $f(x) = O(\frac{1}{x^2})$ et $f'(x) = O(\frac{1}{x^2}).$

Alors la fonction $S(t) = \sum_{n=-\infty}^{+\infty} f(t+n)$ est bien définie, continue, et 1-périodique, et la fonction $f^*(n) = \int_{\mathbb{R}} f(x).e^{-2i\pi nx}dx$ est bien définie, et l'on a : $S(t) = \frac{1}{a}\sum_{m=-\infty}^{+\infty} f^*(n)e^{im2\pi t}$ – Corollaire du Gourdon.

- 2. Liens entre régularité de f et de ses coefficients de Fourier.
 - Z-Q : Théorème de régularité liant f à ses coeffs de Fourier
- 3. Résolution d'équations aux dérivées partielles linéaires sur des domaines simples.
 - Concept de solution stationnaire.
 - **Dev** : Equation de la chaleur sur le cercle : Pour $u_0 \in L^2(\mathbb{R}/2\pi\mathbb{Z})$, l'équation différentielle $\partial_t u \partial_x (\partial_x u) = 0$ sur $]0, +\infty[\times \mathbb{R}/2\pi\mathbb{Z}]$ admet une unique solution f de classe C^2 telle que $f(t, .) \to_{t\to 0^+} u_0$ dans $L^2(\mathbb{R}/2\pi\mathbb{Z})$.
 - C'est pour résoudre des équations de cette forme que la théorie de Fourier a été inventée.
 - On peut aussi résoudre l'équation des ondes ou l'équation de Laplace avec la transformation de Fourier.

Références

Gourdon : Inégalité de Parseval. Egalité de Parseval. Formule sommatoire de Poisson.

Hauchecorne : Contre-Exemple de fonction dont dont la série de Fourier divege.

Zuily, Queffélec : Equation de la chaleur sur le cercle. (Dev)

Faraut : Théorème de Féjer (Dev), Calcul de $\sum_{k} \frac{1}{k^2}$, phénomène de Gibbs

May 9, 2017

Vidal Agniel, École normale supérieure de Rennes